Identifying Disturbance Mechanisms Influencing Resource Selection by Elk in a Natural Gas Development Field

Clay Buchanan and Jeff Beck Department of Renewable Resources University of Wyoming

Tom Bills Bureau of Land Management Buffalo Field Office

December 3, 2009

Potential Impacts to Wildlife

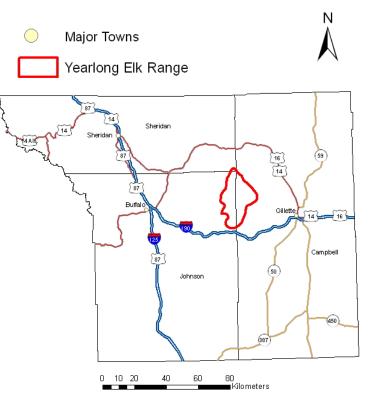
o Direct

- Habitat loss
- Fragmentation
- Mortalities

o Indirect

- Displacement due to avoidance behavior
- Reduced fitness
 - Changes in trends in population parameters (e.g., calf:cow ratios)
 - Changes in resource selection
 - Changes to vital rates

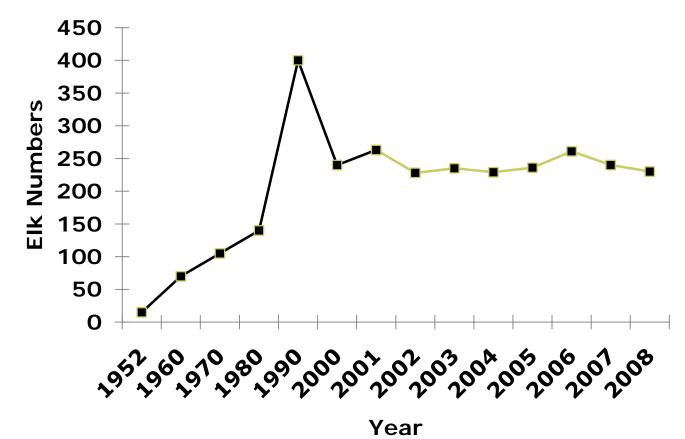
Ungulate Response to Energy Development


- Avoid infrastructure
- Modify migration patterns
- May select marginal habitats to avoid infrastructure (Sawyer et al. 2006)
- Mitigation efforts can reverse avoidance of infrastructure (Sawyer et al. 2009)
- Fitness may be compromised (Hebblewhite 2008)

Fortification Creek Study Area

- 498-km² with 48.6-km²
 wilderness study area
- BEFORE First telemetry study in 1990s provides temporal control
- AFTER (During) Second telemetry study 2005–2007 predevelopment
- AFTER (During) Cow elk equipped with real-time GPS collars in 2008
- Monitoring to continue for several years, but field work for this study 2009–2011

Elk Herd Demographics (WGFD)


- 230 elk in Fortification Creek Area
- Population numbers and ratios managed through fall harvest

Ban and can	numbers per	100 0003
Year	Bulls	Calves
2004	29	32
2005	61	39
2006	44	69
2007	33	30
2008	38	58

Bull and calf numbers per 100 cows

Population Trends

Hypotheses

- To optimize fitness, animals inhabiting areas undergoing energy development are confronted with two choices
 - Emigrate to undisturbed, offsite habitats
 - Occupy increasingly disturbed habitats
 - -Habituate to compromised resource conditions
 - -Shift resource selection to ameliorate consequences of disturbance

Animals occupying increasingly disturbed landscapes may exhibit cumulative effects

- Lower body condition
- Lower reproductive output
- Lower survival

General Objectives

- 1. Obtain landscape-level information from elk and their habitats in an area undergoing CBNG development
 - Disturbance (noise, traffic, visual obstruction)
 - How do disturbance levels change elk habitat selection?
 - Forage quantity and quality
 - Will elk select less optimal habitats as development proceeds?
 - Elk parameters (body condition, cow:calf ratios, survival)
 - Will selection of less optimal habitats lead to reduced population performance?
- 2. Provide management recommendations to assist in maintaining or restoring habitat functionality for elk in areas undergoing development

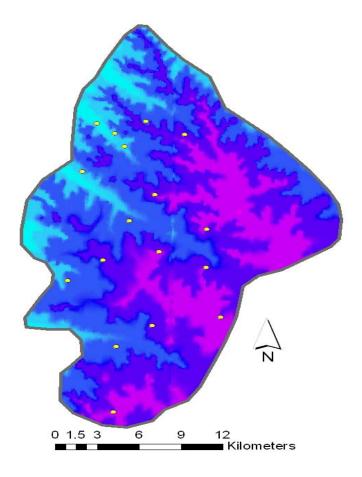
Capture and Marking

- 39 cow elk March 2008
- 20 cow elk December 2008
- 1 legal harvest fall 2008
- 57 marked cow elk
 (~25% of population)
 - 38 GPS
 - 19 VHF

Field Methods – Population Monitoring

- Demography
 - Cow:calf and cow:bull ratios
 - 4 helicopter flight surveys
 - -Early spring
 - -Post-parturition
 - -Pre-hunt
 - -Post-hunt
- Elk survival

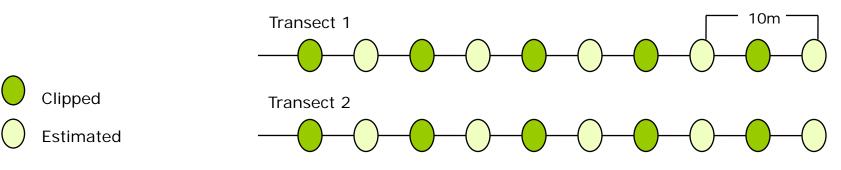
-Seasonal and yearlong



Field Methods – Disturbance Monitoring

Noise – May–August

- Zoom H2 recording units
- Random placement



- Traffic May–August
 - TrailMaster 1500 Traffic Monitors
 - Placed on roads throughout yearlong range

Sound Recording Stations

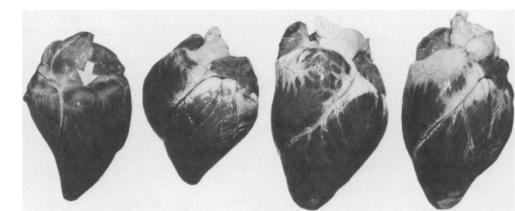
Field Methods – Forage Quantity and Quality

- o 10 sampling sites each in 3 cover types (strata)
 - Random placement in juniper, and sagebrush on cool and warm aspects
- o 2 parallel 50-m transects to perform double sampling
 - Estimate forbs and grasses every 10 m
 - Clip forbs and grasses every other 10 m
 - Use linear regression equation to predict forage in estimated-only quadrats
- o 2 sampling bouts to match forage phenology
 - Early summer May 20–May 31
 - Late summer July 20–July 31

Lab Methods – Forage Quality

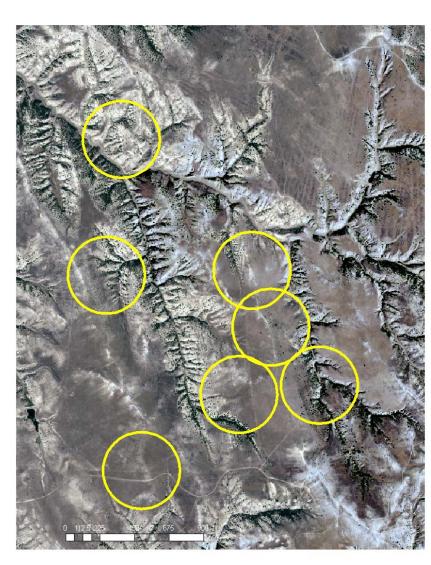
Crude protein – Dr. Brett Hess' Ruminant Nutrition Laboratory, University of Wyoming

Digestible energy – Wildlife Habitat Lab, Washington State University

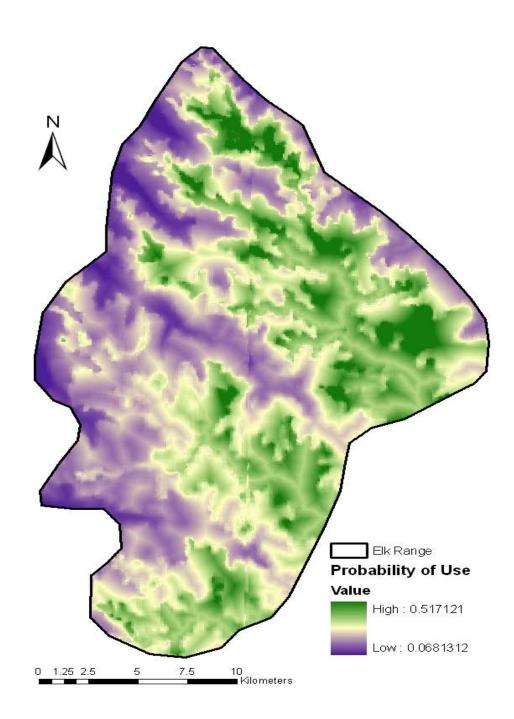

Objective – to evaluate elk body condition in disturbed (Fort Creek) and non-disturbed (Rochelle Hills) sites

 Collect hearts and kidneys from hunterharvested elk in third and fourth weeks of October

Field Methods – Elk Body Condition



 Follow modified Kistner et al. (1980) scoring method based on organ fat deposition


Habitat Selection – Sampling Methods

- Random 250 m sampling units
- Response variable is the number of elk relocations in each sampling unit
- Predictor variables assessed within each sampling unit include:
 - Anthropogenic disturbance (noise and traffic)
 - Cover type
 - Distance to water
 - Distance to disturbance
 - Forage quantity/quality
 - Topography

1992–1996 BEFORE DEVELOPMENT Probability of Elk Occurence

Roads (–) and Elevation (+) best predictors (∆AICc ≥4.56, w_i = 0.871)

Habitat Selection – Modeling

- Create resource selection probability functions for each elk
 - Identify variable coefficients for each elk
- Average coefficients to create population level model
- Create yearly probability of use maps
 - Compare AFTER DEVELOPMENT models to BEFORE
 DEVELOPMENT model
 - Compare changes in probabilities of use throughout development
- Identify relative effect of disturbance mechanisms compared to other mechanisms

2009 Field Season Summary

- o >80,000 elk relocations
- Forage quantity and quality collected twice at 30 sites
- 15 noise monitors collected thousands of hours of sound
 - Station designs held up well to weather
 - Will adjust sampling scheme due to power capacity
- o 18 traffic monitors
 - o Recorded over 45,000 traffic events
- Fall 2009 body condition collection
 - n = 9 samples from Fortification Creek
 - n = 13 samples from Rochelle Hills

Intended Management Implications

- To provide managers with information to:
 - Plan future CBNG development projects to minimize disturbances
 - Restore habitat functionality through reducing or removing the disturbance factors that lead to avoidance of areas undergoing energy development

Acknowledgments

- Anadarko Petroleum Corporation
- Pennaco Energy Incorporated
- Petro-Canada Resources (USA) Incorporated
- Private landowners
- Wyoming Game and Fish Department
- School of Energy Resources, University of Wyoming
- USDI Bureau of Land Management

4 miles

