West Nile Virus: Ecology and Impacts on Greater Sage-grouse Populations

Dave Naugle Brett Walker Jason Tack

West Nile virus

• Arthropod-borne flavivirus

Ecology in sagebrush habitats

• Outbreaks more common during drought

- Epstein and deFilippo 2001, Shaman et al. 2005

• High temperatures = faster virus amplification, mosquito development, and population growth

- Reisen et al. 2006. Zou et al. 2006

• More surface water = more mosquitos for longer

- Zou et al. 2006, Doherty 2007

Hen survival July-August 2003, PRB

WNV reduced survival by 25% in 2003

Lek Attendance Declined ~85% in 2004

Reported WNv mortality in sage-grouse

Recent example from western Idaho

What we know so far

• WNv affects both sexes, all age classes

- Aldridge 2005, Kaczor 2008, Walker 2008

- Lab tests confirm that all birds that contract disease die - Clark et al. 2006
- WNv mortality varies temporally, geographically - Naugle et al. 2005, Walker and Naugle 2008
- Laboratory and field data suggest very low resistance

- Clark et al. 2006, Walker et al. 2007

Population Modeling

How much does WNv mortality affect population growth?

Will increasing resistance offset impacts?

Simulations

- Three simulation scenarios:
 - 1) No WNv
 - 2) Simulated WNv (4% resistance)

- Walker et al. 2007

- 3) Simulated WNv (increasing resistance)
- 1000 replicates per simulation

Simulated WNv infection rates

• Typically low, but with extreme values (~50%)

- Walker et al. 2007

Disease reduced population growth by 6 – 9% per year

Scenario	Change in Population Growth
WNv	6 – 9 %
WNv with increasing resistance	6 – 8 %

Resistance increased marginally

Higher infection rates would cause resistance to spread faster, but increase impacts

6 ways to build a pond that doesn't grow mosquitoes

- 1) Overbuild CBNG ponds to accommodate water
- 2) Build steep shorelines to reduce shallow water and vegetation and increase wave action
- 3) Lower water levels to maintain muddy shorelines
- 4) Dig ponds in flat areas instead of damming natural draws to restrict slope seepage
- 5) Line channel and overflow spillway with crushed rock to limit sediment and vegetation growth
- 6) Fence pond site to restrict access by livestock

Effects of West Nile in Valley County

North Dakota

Take Homes

- WNv is an endemic stressor that is here to stay
- Locally we can design water projects to help reduce impacts
- Continue to monitor resistance to see if rates increase to buffer against losses
- Small populations will experience inordinately large impacts
- A call for conservation of large intact landscapes

Thanks for listening, questions or comments?

